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Time Series Analysis
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Forecasting Strategies

Basic Methods (initial)
Naive, Moving Averages, Random Walk

Trend Interpolation (fast)
Simple Exponential Smoothing (SES) [Hynd08]
Cubic Smoothing Splines [Hynd02]
Croston‘s method for intermittent time series [Shen05]
Autoregressive Moving Averages (ARMA11) [Box08]
Estimation and Modelling of Seasonal Pattern (complex)
Extended Exponential Smoothing (ETS) [Hynd08, HynO8]
ARIMA framework with automatic model selection [Box08, Hynd08]
tBATS for complex seasonal patterns [Livell]
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Forecast Accuracy Metric -\\J(IT

Mean absolute scaled error (MASE) [HyndO6]
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Workload Intensity Characterization -&‘(IT

High level data analysis to gain information on:
* Noise level & occurrences of unpredictable bursts
« Influence of trends and seasonal patterns

| Workload Intensity Trace:
Time Series of Request Arrival Rates
{ Length { Positivity { Frequency
: .. . Quartile :
Gradient Monotonicity Variance { Dispersion Burstiness

Foundations » Approach >>  Architecture  »>  Evaluation »>  Related Work »>  Summary
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Classification Mechanism -\\A(IT
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Decision Tree for Classification
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Data, Timing, Parameters

classification: classification:

(I) select strategies

(1) evaluate selection

| forecast forecast
execution & execution &
result output result output

new classification:
() select strategies

forecast
execution &

forecast
execution &

result output

result output

forecast horizon/
frequency
(must not be equal)
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new forecast
horizon

!

classification frequency (# forecast executions)

Data input stream:

« Time series of request arrival rates
[0; maxSize] most recent values
time unit, delta time & start time

Result output stream:
 Time series of forecast mean values,
confidence intervals & MASE metric
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Architecture and Implementation -\\-‘(IT
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Experiment: Example for ﬂ("'
Forecast Accuracy Improvement

« Real-world workload intensity trace (IBM CICS transactions on System z)

« Comparison of Workload Classification & Forecasting (WCF) approach
to Extended Exponential Smoothing (ETS) and Naive forecast

1000x CICS transactions per 30 minutes
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Experiment
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Cumulative Percentage Error Distribution
Comparison of WCF to Naive and ETS strategy
CICS transactions (5 days, 48 frequency, 240 forecast values)
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Case Study: Example for Using
Forecast Results ﬂ(".

Scenario: Additional server instances at certain thresholds, 3 weeks
Real-world workload intensity trace (Wikipedia DE page requests per hour)

%W Il =
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day |upper threshold |lower threshold

Case Study

Resource provisioning:

(I) Without forecasting (solely reactive):
Resource provisioning actions triggered by
76 SLA violations

(1) Interpreting WCF forecast results (add. proactive):
Reduction to 34 or less SLA violations

—> No significant change in resource usage observed
(server instances per hour)

8x correct forecast: server instance not needed
correct forecast: server instance needed at time t

15 x nearly correct forecast: time t slightly too early or too late
incorrect forecast: need not detected or false positive

Foundations >>  Approach  >>  Architecture 3  Evaluation »> RelatedWork »>  Summary
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Monitoring ' ' J
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- Focus on forecasting of performance metrics not workload intensity
- Focus on single tools of the toolkit or other toolkits no dynamic selection
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Summary & Outlook

Survey on Forecast Approaches
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Implementation of the
WCF-System

provides continuous forecast
results at run-time

Construction of a
Workload Classification Scheme

Experiments and Case Study:
Evaluation based on real-world
workload intensity traces

Forecast Accuracy

Improvement:

> 37 % comparedto ETS as an
established approach

Proactive Resource

Provisioning enabled:

> Up to 75 % less SLA violations
than reactive

Future Work:

> System Integration with Kieker

> Filters: Objective Selection, Splitting
> Use for Anomaly Detection [Biell2]
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Backup: Forecast Objectives

AT

Karlsruhe Institute of Technology

parameter parameter proposed explanation
name space setting
forecast period [1;max_int] | [1; frequency] This objective defines how often a forecast is executed in times of new time series points.
For a value of 1 a forecast is requested every new time series point and can be dynamically
increased by period factors in the classification setting to reach the configured maximum
horizon. This value should be equal or smaller than the start horizon objective (if continuous
or even overlapping forecasts are needed)
highest [1;4] [2;4] This objective defines the highest overhead group from which the forecast strategies will be
overhead chosen. A value of 2 may be sufficient if the time series data have strong trend components
group that are not overlaid by seasonal patterns, as the strength of class 2 strategies is the trend
extrapolation. For time series with seasonal patterns, a setting of 3 for a maximum forecast
computation time of 30 seconds and 4 for forecast computation times below 1 minute is
recommended.
confidence level [0;100) may be given The confidence level a of the returned forecast confidence intervals is defined by this
by a forecast objective.
interpreter
start horizon [1;max_int] [1; 1/8x The start horizon defines the number of time series points to be forecasted at the beginning
frequency] and can be dynamically increased by period factors in the classification setting up to the
maximum horizon setting. This value should be equal or higher than the forecast period
objective (if continuous or even overlapping forecasts are needed).
maximum [1;max_int] | frequency The value of maximum harizon setting defines the maximum number of time series points to
horizon be forecasted. A recommendation for this setting is the value of the frequency setting of the
time series, as a higher horizon setting may lead to broad confidence intervals.
19 Nikolas Herbst — Workload Classification and Forecasting Software Design and Quality Group
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Backup: Forecast Strategy Overhead Groups

AT

overhead strategies application
group

1 —nearly naive, These two strategies are only applied if less than initial size threshold values

none arithmetic mean are in the time series. The arithmetic mean strategy can have an forecast

accuracy below 1 and therefore be better than a solely reactive approach
using implicitly the naive strategy. This is only true in cases of nearly constant
base level of the arrivals rates. These strategies should be executed as
frequently as possible every new time series point.

2 -low cubic spline interpolation, The strengths of these strategies are the low computational efforts below
ARIMA 101, 100ms and their ability to extrapolate the trend component. They differ in
simple exponential sensitivity to noise level or seasonal components. These strategies need to
smoothing, be executed in a high frequency with small horizons.

Croston’s method for
intermitted demands

3 - medium extended exponential The computational effort for both strategies is below 30 sec for a maximum
smoothing, of 200 time series points. They differ in the capabilities of modeling seasonal
tBATS components.

4 - high ARIMA, The computational effort for the ARIMA approach can reach up to 60 sec for
tBATS a maximum of 200 time series points and may achieve smaller confidence

intervals than the tBATS approach.
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Backup: Sequence Diagram -\\-‘(IT
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Backup: Class Diagram - Management
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WIBManagement «interface»
IManager
+addWIB()
interface»
morel tsn [FremoveWIB() «in
Manager - +updatew!s() IForecaster ForecasterFactory
. . T
-wibList : IWorkloadintensityBehavier +reguestClassification() : |
|
manage ”fef’f’e? trorecastf) winterfaces : winterface» 1
g +initialize() e | |
IClassification | IForecastResult |
s +backup() 7~ | ™~ |
- +reset() | 1 | :
wcalln ! i : |
«interface» R [ o i
IworkloadintensityBehavior
+getiD() «active»WorkloadIntensityBehavior
i;ji;f:;” -active : Boolean has
-ID:int 2 ForecastObjectives
+getPeriod() hread
+setPeriod() «i -Threa 1 1
implements»|_oiod - lon has
+getClassSetting() p - ong P .
+ ClassificationSetting
+setClassificator() run()
+getForecastObjectives() +readNewValues() 1 1
+setForecastObjectives() +eallClassificator() L, Persistency
+getTimeSeries() +ca I_IForecaster{} I rtert
+setTimeSeries() +W”_teR95“|tU } I‘:” e_rtace »
+getResult() +writeState() } «calln ersistency
+getMASEMetric() | +rec!dTr'afn es‘en'f_'sConﬁg () : ITimeSeries
+setMASEMetric() has.1 L ___nx +writeTimeSeriesConf{)
+readTimeSeries() : [TimeSeries
0.1 +initWiB()
} +write WIB()
TimeSeries winterfaces +writeForecastResult()
ITimeSeries
TimeSeriesPoint +append() «implements»
-time : Date +appendAll()
-value : double +size()

«implements»

wcalln

«implements»

|
|
| wcall»
|

TimeSeries jommmes 1 [
I
«interface» 0.* h 1 -points : ITimeSeriesPoint : :

ITimeSeriesPoint s -startTime : Date

+getValue() : double -deltaTimeUnit
-nextTime : Date
-capacity
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Backup: Class Diagram - Classification -\\J(IT

ClassificationSetting

-classificationStrategy : ClassificationStrategyEnum

wenumeration» . .
-class_period : int

ClassificationStrategyEnum

— Cinterfacen -recentFcStrategyl : ForecastStrategyEnum
+lnitial ICIassifil:ati.on -recentFcStrategy?2 : ForecastStrategyEnum
+
+(F:E‘5t | PP +getForecasterl() : IForecaster

omplex classify +getForecaster2() : IForecaster

AN

wimplements»

wcreates» «creates»
InitialClassificationStrategy FastClassificationStrategy ComplexClassificationStrategy

+classify() +classify() +classify()

T
wcall»

|

|

|

|

|
Sl

wutility»
ClassificationUtilities

«calln +calcForecastQuality() : double

+calcindices() : double

+calcDeviation() : double
+calcVarianceCoefficient() : double
+countNumberOfZeroValues() : int
+calcMaximum() : double

+calcArithMean() : double

+calcMedian() : double
+calcLengthOfBiggestMonotonicSection() : int
+calcRelativeMonotonicity() : double
+calcRelativeGradient() : double
+calcQuartileDispersionCoefficient() : double
+calcQuartiles() : double
+calcBurstinessindex() : double
+applyMovingAverage() : ITimeSeries
+smoothTShyCombination() : ITimeSeries
+getlastXofTS() @ ITimeSeries
+getValuesGreaterThan() : ITimeSeries
+getValuesLessThan() : ITimeSeries

wcall»
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Backup: Class Diagram — Forecasting -\\J(IT

winterface» " «interfacen
ForecastObjectives IForecaster has b resu IForecastResult
start horizon :int +forecast() : IForecastResult +getConfidencelevelf) : int
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ForecastStrategyEnum +getUpper() : ITimeSeries
+getOriginal() : ITimeSeries
«abstract» +NAIVE
AbstractForecaster +MEAN
" N +CROST
-confidencelevel : int +Cs
-historyTimeSeries +SES
RserverBridge +forecast() : IForecastResult +ARIMALOL
+ETS ForecastResult
-host ¢ string wextends» +ARIMA
rport : int +TBATS

+getinstance() : RServerBridge
+assign()

+
1 g use wabstract»

+evaluate() AbstractRForecaster
+unigqueVarName()

+toTimeSeries()

+forecast() : IForecastResult

JAN
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|
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|
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1 |
: ! l |
1 : | :
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1 ! ! | |
1 ! | :
I ! |
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1 |

|
|
|
|
|
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|
|
|
|

ForecastStrategy::ForecasterFactory

+getForecaster() : IForecaster
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Backup: Experiment WCF4 vs. tBATS, ARIMA
WCF limited to choose from tBATS and ARIMA

—> Significant accuracy improvement by combination and dynamic strategy selection
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Cumulative Percentage Error Distribution
Comparison of WCF (overhead group 4) to tBATS, ARIMA and NAIVE
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