
 Who We Are

 Architecture Evolution and Evaluation

 Problem Statement

 Challenges

 State of the Art

 Approach

 Conclusion

Model-based Software Architecture

Evolution and Evaluation

H. Lichter

A. Dragomir

Research Group
Software Construction

RWTH Aachen University

horst.lichter@swc.rwth-aachen.de

adragomir@swc.rwth-aachen.de

www.swc.rwth-aachen.de

mailto:horst.lichter@swc.rwth-aachen.de
mailto:horst.lichter@swc.rwth-aachen.de
mailto:horst.lichter@swc.rwth-aachen.de
mailto:adragomir@swc.rwth-aachen.de
mailto:adragomir@swc.rwth-aachen.de
mailto:adragomir@swc.rwth-aachen.de

H. Lichter, A. Dragomir

Who we are

 RWTH Aachen University

 http://www.rwth-aachen.de/

 Chair for Software Construction

 Head of the Group: Prof. Dr. Rer. Nat. Horst Licter

 Research focus:

• Requirements Engineering

• Metrics and Processes

• Model Management

• Architecture Evolution and Evaluation

 https://www2.swc.rwth-aachen.de/

H. Lichter, A. Dragomir

Architecture Evolution & Evaluation

 Cooperation project with Generali Deutschland Informatik
Services

 More than 500 Systems

 More than 4000 information flows

 Challenge

 Large IT Landscapes

 Complex, heterogeneous systems

H. Lichter, A. Dragomir

Problem Statement

 The importance of software architecture has been widely
acknowledged

 planningIT

 A central repository for enterprise architecture management

• IT Architecture

• Business Architecture

• Service Architecture

• Project Management

 The information is introduced manually

 Architecture Erosion

H. Lichter, A. Dragomir

Challenges

 No general solution, to recover multiple architecture
views

 The recovered behavior is usually not mapped on
architecture elements

 How are the layers collaborating to achieve a certain behavior?

 How are the components collaborating within a layer?

 How is a component achieving its task?

 Hard to understand where architecture rules are violated

 Architecture evaluation is rarely automated

 Architecture variants are compared manually

H. Lichter, A. Dragomir

State of the Art

 Multiple solutions exist to recover & visualize the current
status of the software architecture

 Software evaluation techniques have been widely
proposed

Old

Architecture
Description Architecture Reconstruction

Tools

Save

Sotograph/
Sotoarc

LISA

…

Kieker

SoftArch DiscoTect

H. Lichter, A. Dragomir

Approach

Architecture
Knowledge

Management

Architecture
Evolution

Architecture
Enforcement

Architecture
Evaluation

Architecture
Monitoring

The ARichtecture Analysis and Monitoring InfraStructure

H. Lichter, A. Dragomir

General Workflow

H. Lichter, A. Dragomir

Architecture Monitoring

H. Lichter, A. Dragomir

Architecture Monitoring (2)

 What architecture meta-model to use?

 What is a component?

 To which upper-level architecture element should a
component’s behavior be attributed?

 How to technically implement the monitoring?

 What visualization types are useful?

H. Lichter, A. Dragomir

Architecture Evaluation

 Allow the specification of rules, to describe:

 Allowed/Prohibited interactions

 Performance restrictions

 Visualize violations of rules

 Define metrics, to measure conformance with rules

 Re-use/define metrics, to measure overall architecture
quality

 Re-use/define metrics, to compare architecture variants

 Automate the computation of metrics’ value

 Visualize the evolution of software architecture’s quality

at different
abstraction levels

H. Lichter, A. Dragomir

Conclusion

 ARAMIS aims to offer a holistic approach for architecture
evolution and evaluation

 The first steps to achieve this:

 Develop a model-based software architecture monitoring
approach

 Offer means to define software-architecture related rules

 Re-use/define metrics to (semi-) automatically evaluate the
software architecture on a regular basis

