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Who we are 

 

 RWTH Aachen University 

 http://www.rwth-aachen.de/ 

 

 Chair for Software Construction 

 Head of the Group: Prof. Dr. Rer. Nat. Horst Licter 

 Research focus: 

• Requirements Engineering 

• Metrics and Processes 

• Model Management 

• Architecture Evolution and Evaluation   

 https://www2.swc.rwth-aachen.de/ 
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Architecture Evolution & Evaluation 

 Cooperation project with Generali Deutschland Informatik 
Services  

 More than 500 Systems 

 More than 4000 information flows  

 

 Challenge 

 Large IT Landscapes 

 Complex, heterogeneous systems 
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Problem Statement 

 The importance of software architecture has been widely 
acknowledged 

 planningIT 

 A central repository for enterprise architecture management 

• IT Architecture 

• Business Architecture 

• Service Architecture 

• Project Management  

 The information is introduced manually 

 Architecture Erosion 
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Challenges 

 

 No general solution, to recover multiple architecture 
views 

 The recovered behavior is usually not mapped on 
architecture elements 

 How are the layers collaborating to achieve a  certain behavior? 

 How are the components collaborating within a layer? 

 How is a component achieving its task? 

 Hard to understand where architecture rules are violated 

 Architecture evaluation is rarely automated 

 Architecture variants are compared manually 
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State of the Art 

 Multiple solutions exist to recover & visualize the current 
status of the software architecture 

 Software evaluation techniques have been widely 
proposed 

 

 
Old 

Architecture 
Description   Architecture Reconstruction 

Tools 

Save 

Sotograph/
Sotoarc 

LISA 

… 

Kieker 

SoftArch DiscoTect 
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Approach 

Architecture 
Knowledge 

Management 

Architecture 
Evolution 

Architecture 
Enforcement 

Architecture 
Evaluation 

Architecture 
Monitoring 

The ARichtecture Analysis and Monitoring InfraStructure 
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General Workflow 



H. Lichter, A. Dragomir   

Architecture Monitoring 
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Architecture Monitoring (2) 

 

 What architecture meta-model to use? 

 What is a component? 

 

 To which upper-level architecture element should a 
component’s behavior be attributed? 

 

 How to technically implement the monitoring? 

 

 What visualization types are useful? 
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Architecture Evaluation 

 

 Allow the specification of rules, to describe: 

 Allowed/Prohibited interactions 

 Performance restrictions 

 Visualize violations of rules 

 Define metrics, to measure conformance with rules 

 Re-use/define metrics, to measure overall architecture 
quality 

 Re-use/define metrics, to compare architecture variants 

 Automate the computation of metrics’ value  

 Visualize the evolution of software architecture’s quality 

 

 

at different 
abstraction levels 
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Conclusion 

 

 

 ARAMIS aims to offer a holistic approach for architecture 
evolution and evaluation 

 

 The first steps to achieve this: 

 Develop a model-based software architecture monitoring 
approach 

 Offer means to define software-architecture related rules 

 Re-use/define metrics to (semi-) automatically evaluate the 
software architecture on a regular basis 


