On Integration of Textual and Graphical Modeling

Pragmatics in MENGES

Christian Schneider

Real-Time Systems and Embedded Systems Group
Department of Computer Science
Christian-Albrechts-Universität zu Kiel
www.informatik.uni-kiel.de/rtsys

KoSSE-Workshop, November 10, 2010
Outline

The MENGES project
 The Setting
 Current State
 Textual vs. Graphical Modeling

Pragmatics
 A Definition
 Our Approach
 Dynamic Views
 View Management

Conclusion
The Context of MENGES

Setting

- Design of safety-critical controlling systems in the rail-bounded transportation field

Current state in the business

- Requirements analysis
 \[\rightarrow\] huge amount of text documents, informal
- Design specifications with a proprietary modeling language
 \[\rightarrow\] formalized description of the system logic
The Context of MENGES

Setting

▶ Design of safety-critical controlling systems in the rail-bounded transportation field

Current state in the business

▶ Requirements analysis
 → huge amount of text documents, informal

▶ Design specifications with a proprietary modeling language
 → formalized description of the system logic

▶ Implementation in a model-based way
The Context of MENGES

Setting

▶ Design of safety-critical controlling systems in the rail-bounded transportation field

Current state in the business

▶ Requirements analysis
 → huge amount of text documents, informal
▶ Design specifications with a proprietary modeling language
 → formalized description of the system logic
▶ Implementation in a model-based way
The Context of MENGES

Setting

- Design of safety-critical controlling systems in the rail-bounded transportation field

Current state in the business

- Requirements analysis
 - huge amount of text documents, informal
- Design specifications with a proprietary modeling language
 - formalized description of the system logic
- Implementation in a model-based way

Most important issue

- No integration of those specifications (derivation, tracing, ...)
The Aim of MENGES

- Engineers shall be assisted in these tasks, i.e. while
 - analysing,
 - designing,
 - maintaining,
 - testing,
 - verifying,
 - documenting and
 - translating systems and their parts
The Aim of MENGES

- Engineers shall be assisted in these tasks, i.e. while
 - analysing,
 - designing,
 - maintaining,
 - testing,
 - verifying,
 - documenting and
 - translating systems and their parts

- Domain Specific Languages (DSLs) + tooling are to be created
 - intended to cover the necessary specification parts and
 - form a homogeneous development environment
Kinds of specifications

- Topology: Instances of switches, running tracks, track sections, ...
- Types for logical Elements
- Deployment
- Types for Field Elements
- Running Track Behavior
- Field Element Behavior
- Field Element Behavior (Driver)
- Type Layer
Field Element description

```java
field element Gleisabschnitt extends Beanspruchbar {
    statevars
    reserviert:
        ( ja,
        nein );
    beansprucht:
        ( nicht,
        DWeg,   // als Durchrutschweg-Element
        FLR,    // im Flankenschutzraum
        FWR,    // im Fahrweg einer Rangierstrasse
        FWZ,    // im Fahrweg einer Zugstrasse
        DWeg_FLR, FLR_FLR, FWR_FLR, FWZ_FLR, FWZ_DWeg,
        DWeg_FLR_FLR, FWR_FLR_FLR, FWZ_FLR_FLR );
    procedures
    reservieren() = {
        reserviert -> ja
    };
}
```
Behavior specification - State Machines

```plaintext
state machine Gleisabschnitt_beansprucht_SM {
    references beansprucht in Gleisabschnitt;
    transitions
    start nicht --> DWeg, FLR, FWR, FWZ;
    DWeg --> nicht, DWeg_FLR, FWZ_DWeg;
    FLR --> nicht, DWeg_FLR, FLR_FLR, FWR_FLR, FWZ_FLR;
    FWR --> nicht, FWR_FLR;
    FWZ --> nicht, FWZ_FLR, FWZ_DWeg;
    DWeg_FLR --> DWeg, FLR, DWeg_FLR_FLR;
    FLR_FLR --> FLR, DWeg_FLR_FLR, FWR_FLR_FLR, FWZ_FLR_FLR;
    FWR_FLR --> FLR, FWR, FWR_FLR_FLR;
    FWZ_DWeg --> DWeg, FWZ;
    FWZ_FLR --> FLR, FWZ, FWZ_FLR_FLR;
    DWeg_FLR_FLR --> DWeg_FLR, FLR_FLR;
    FWR_FLR_FLR --> FWR_FLR, FLR_FLR;
    FWZ_FLR_FLR --> FWZ_FLR, FLR_FLR;
}
```
Behavior specification - Rule Blocks

```
rule block reserviere references Gleisabschnitt {
  rule graph
    --> [istReservierungsVorbedingung()] {
      -> [beansprucht == nicht] / {
        reservieren()
      }
    }
    --> [beansprucht == DWeg] / {
        reservieren()
    }
    --> [beansprucht == FLR] / {
        reservieren()
    }
    --> [beansprucht == FLR_FLR] / {
        reservieren()
    }
}
```
Assessment

The textual languages are . . .

- formal and compact
- precise in terms of separation of concerns
- easily and fast editable
Assessment

The textual languages are . . .

- ☑️ formal and compact
- ☑️ precise in terms of separation of concerns
- ☑️ easily and fast editable

but . . .

- ☹️ content may be hard to conceive
- ☹️ they are inflexible:
 mostly text = document
- ☹️ exploring is laborious
- ☹️ the context is missing / get lost quickly
Assessment

The textual languages are . . .

- formal and compact
- precise in terms of separation of concerns
- easily and fast editable

but . . .

- content may be hard to conceive
- they are inflexible:
 mostly text = document
- exploring is laborious
- the context is missing / get lost quickly

Question: What about graphical languages?
A graphical notation of state machines
SOS!
Assessment - cont’d

Graphical languages/representations may be . . .

- formal and compact
- precise in terms of separation of concerns
- easier to conceive
- more flexible
Assessment - cont’d

Graphical languages/representations may be . . .

- formal and compact
- precise in terms of separation of concerns
- easier to conceive
- more flexible

but . . .

- editing is time-consuming
- exploring is laborious
- the context is missing / get lost quickly
Assessment - cont’d

Graphical languages/representations may be . . .

- formal and compact
- precise in terms of separation of concerns
- easier to conceive
- more flexible

but . . .

- editing is time-consuming
- exploring is laborious
- the context is missing / get lost quickly

Consequence?
Pragmatics of modeling languages

Pragmatics of modeling languages deserves more attention than it has received so far
Pragmatics of modeling languages

Pragmatics of modeling languages deserves more attention than it has received so far.
Pragmatics of modeling languages

Pragmatics of modeling languages deserves more attention than it has received so far.

- Pragmatics usually concentrates on practical aspects of how constructs and features of a language may be used to achieve various objectives (e.g., when to use an assignment).

- Here, focus is on the mechanics of handling a language (editing, maintaining, inspecting).
Pragmatics of modeling languages

Pragmatics of modeling languages deserves more attention than it has received so far.

- Pragmatics usually concentrates on practical aspects of how constructs and features of a language may be used to achieve various objectives (e.g., when to use an assignment).

- Here, focus is on the mechanics of handling a language (editing, maintaining, inspecting).

Pragmatics of modeling languages $=_{\text{def}}$ practical aspects of handling a model in a model-based design flows
Our Approach . . .

- Get inspiration from successful textual paradigms and tools
- Combine best of graphical and textual worlds
- Provide flexible, alternative views of system under development (SUD) allowing to focus on a certain context
Our Approach . . .

- Get inspiration from successful textual paradigms and tools
- Combine best of graphical and textual worlds
- Provide flexible, alternative views of system under development (SUD) allowing to focus on a certain context

The key enabler:

Automatic, flexible synthesis of graphical & textual views organized by a powerful View Management
Our Approach ...
Our Approach . . .
Our Approach...
Our Approach . . .
Dynamic Views . . .

. . . on state machines
Recall: rule blocks

```plaintext
rule block reserviere references Gleisabschnitt {
  rule graph
    --> [istReservierungsVorbedingung()] {
      -> [beansprucht == nicht] / {
        reservieren()
      };
      -> [beansprucht == DWeg] / {
        reservieren()
      };
      -> [beansprucht == FLR] / {
        reservieren()
      };
      -> [beansprucht == FLR_FLR] / {
        reservieren()
      };
    }
}
```
Dynamic Views...

...on rule blocks
Dynamic Views . . .
. . . on rule blocks - resolved
View Management

- Provide a (graphical) view of the part under development
 - allow to resolve called procedures, ...

- Support interactive browsing
 - clicking on an element reveals its declaration / origin

- Find mutual references of state transitions and rule blocks
 - compute and highlight (un-) covered transitions

- Synchronize open views if model has been changed
 - without any user request

- Focus on context in simulation and testing tasks
 - ...

Christian Schneider On Integration of Textual and Graphical Modeling Slide 23
state machine Gleisabschnitt_beansprucht_SM {
transitions
nicht --> DWeg, FLR, FRW, FWZ;
DWeg --> nicht, DWeg, FLR, FWZ, FRW, FWZ_Dweg;
FLR --> nicht, FLR, DWeg, FLR, FRW, FWZ_FLR, FRW_FLR, FWZ_FLR;
FRW --> nicht, FRW, FLR, FWZ_FLR, FRW_FLR, FWZ_FLR;
FWZ --> nicht, FWZ_FLR, FRW_FLR, FWZ_FLR;
D Weg, FLR_Dweg, FRW, FWZ_Dweg, FLR_FLR_Dweg, FRW_FLR_Dweg, FWZ_FLR_Dweg;
FLR_FLR --> FRW, FRW_FLR, FRW_FLR, FWZ_FLR_FLR, FRW_FLR_FLR;
FRW_FLR --> FRW, FRW_FLR, FRW_FLR, FWZ_FLR_FLR, FRW_FLR_FLR;
FWZ_FLR --> FRW, FRW_FLR, FRW_FLR, FWZ_FLR_FLR, FRW_FLR_FLR;
FWZ_FLR_FLR --> FRW, FRW_FLR, FRW_FLR, FWZ_FLR_FLR, FRW_FLR_FLR;
}

rule block beanspruche_FWZ references Gleisabschnitt (Fahrstrasse reservieren)
rule graph

-->{ IstBeanspruchungsVorbedingung() } {
 [beansprucht -> nicht] / {
 beanspruchen(FWZ);
 };
}

gleisabschnitt.feldelemente {
nein);
beansprucht: Beanspruchbar.beansprucht +
 (DWeg, // beansprucht als Durchgangsstrasse
 FLR, // beansprucht in Flankenschutzraum
 FRW,
 FWZ, // beansprucht in Fahrstrasse
 DWeg_FLR, FLR_FLR, FRW_FLR, FWZ_FLR, DWeg_FLR_FLR, FLR_FLR_FLR, FRW_FLR_FLR, FWZ_FLR_FLR);
}

procedures
reservieren() = {
 reserviert = ja;
 beanspruchen(Beanspruchbar state) = {
 beansprucht = state,
 reserviert = nein;
 };
};
Resolve procedure calls
state machine Gleisabschnitt_beansprucht_SM {

transitions beansprucht in Gleisabschnitt;

nicht --> DWeg, FLR, FWR, FWZ;
DWeg --> nicht, DWeg_FLR, FWR_FLR, FWR, FWZ_FLR, FWZ_FLR_FLR;
FLR --> nicht, FWR_FLR, FWR_FLR, FWR, FWZ_FLR_FLR;
FR --> nicht, FWR_FLR, FWR_FLR, FWR, FWZ_FLR_FLR;
FW --> nicht, FWR_FLR, FWR_FLR, FWR, FWZ_FLR_FLR;
FWZ --> nicht, FWR_FLR, FWR_FLR, FWR, FWZ_FLR_FLR;
DWeg_FLR --> DWeg, FLR, DWeg_FLR_FLR, FWR_FLR, FWR_FLR_FLR, FWZ_FLR_FLR;
FWR_FLR --> FLR, DWeg_FLR_FLR, FWR_FLR, FWR_FLR_FLR, FWZ_FLR_FLR;
FLR_FLR --> FLR, DWeg_FLR_FLR, FWR_FLR, FWR_FLR_FLR, FWZ_FLR_FLR;
FWZ_FLR --> FLR, DWeg_FLR_FLR, FWR_FLR, FWR_FLR_FLR, FWZ_FLR_FLR;
FWZ_FLR_FLR --> FLR, DWeg_FLR_FLR, FWR_FLR, FWR_FLR_FLR, FWZ_FLR_FLR;
}

rule block beanspruche_FWZ references Gleisabschnitt (Fahrstrasse reservieren)

rule graph

--> [istBeanspruchungsVorbedingung()] {
 beanspruch == nicht } / {
 beanspruchen(FWZ);
}

procedures

reservieren() = {
 reserviert -> ja
};

beanspruchen(Beanspruchbar state) = {
 beanspruch -> state,
 reserviert -> nein
};
Conclusion

What did I talk about?

- shortly introduced the MENGES project
- outlined the deployment of textual languages
- motivated benefits/downsides of textual & graphical notations
- sketched an approach on how to integrate them resulting in much more abilities of handling models
DVDPlayer

Signal: POWER, EJECT, PLAY, STOP, AUDIO.

On

- OpenTray
 - EJECT
 - EJECT

ClosedTray

- PAUSE
- PLAY
- STOP
- Stop

French
 - AUDIO
 - German
 - Spanish
 - English

region R0:
 - init state Off
 - On with POWER
 - state On
 - region R0:
 - init state OpenTray
 - ClosedTray with EJECT
 - state ClosedTray
 - region R0:
 - init state PAUSE
 - Playing with PLAY
 - state Playing
 - 1 Stop with STOP
 - 2 PAUSE with PLAY
 - final state Stop
 - Playing with PLAY

region R1:
 - init state English
 - German with AUDIO
 - state German
 - French with AUDIO
 - state French
 - Spanish with AUDIO
 - state Spanish