Model-based Software Architecture Evolution and Evaluation

- Who We Are
- Architecture Evolution and Evaluation
- Problem Statement
- Challenges
- State of the Art
- Approach
- Conclusion

H. Lichter

A. Dragomir

Research Group Software Construction

RWTH Aachen University

horst.lichter@swc.rwth-aachen.de

adragomir@swc.rwth-aachen.de

www.swc.rwth-aachen.de

Who we are

- RWTH Aachen University
 - http://www.rwth-aachen.de/

- Chair for Software Construction
 - Head of the Group: Prof. Dr. Rer. Nat. Horst Licter
 - Research focus:
 - Requirements Engineering
 - Metrics and Processes
 - Model Management
 - Architecture Evolution and Evaluation
 - https://www2.swc.rwth-aachen.de/

Architecture Evolution & Evaluation

- Cooperation project with Generali Deutschland Informatik
 Services
 - More than 500 Systems
 - More than 4000 information flows

- Challenge
 - Large IT Landscapes
 - Complex, heterogeneous systems

Problem Statement

- The importance of software architecture has been widely acknowledged
- planningIT
 - A central repository for enterprise architecture management
 - IT Architecture
 - Business Architecture
 - Service Architecture
 - Project Management
 - The information is introduced manually
- Architecture Erosion

Challenges

- No general solution, to recover multiple architecture views
- The recovered behavior is usually not mapped on architecture elements
 - How are the layers collaborating to achieve a certain behavior?
 - How are the components collaborating within a layer?
 - How is a component achieving its task?
- Hard to understand where architecture rules are violated
- Architecture evaluation is rarely automated
- Architecture variants are compared manually

State of the Art

- Multiple solutions exist to recover & visualize the current status of the software architecture
- Software evaluation techniques have been widely proposed

Approach

The ARichtecture Analysis and Monitoring InfraStructure

General Workflow

Architecture Monitoring

Architecture Monitoring (2)

- What architecture meta-model to use?
 - What is a component?

To which upper-level architecture element should a component's behavior be attributed?

How to technically implement the monitoring?

What visualization types are useful?

Architecture Evaluation

- Allow the specification of rules, to describe:
 - Allowed/Prohibited interactions \(\bigcup_{\text{at } 0} \)
 - Performance restrictions

- abstraction levels
- Visualize violations of rules
- Define metrics, to measure conformance with rules
- Re-use/define metrics, to measure overall architecture quality
- Re-use/define metrics, to compare architecture variants
- Automate the computation of metrics' value
 - Visualize the evolution of software architecture's quality

Conclusion

ARAMIS aims to offer a holistic approach for architecture evolution and evaluation

- The first steps to achieve this:
 - Develop a model-based software architecture monitoring approach
 - Offer means to define software-architecture related rules
 - Re-use/define metrics to (semi-) automatically evaluate the software architecture on a regular basis